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Existing methods of time series analysis of nonlinear dynamical systems deal with the dynamics on single
sstranged attractors. We extend this method for systems that can be externally manipulated. We interact with a
previously unknown system by perturbing it randomly and recording the responses. By following transients for
a short time and approximating the global flow, we can predict the final long-term dynamics, including
coexisting multistable, chaotic, or periodic dynamics. Also the localization of basins of attraction is possible,
enabling the selection or control of the type of final dynamics. Numerical and experimental examples of driven
nonlinear oscillators are given.
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I. INTRODUCTION

Time-series analysis of nonlinear dynamical systemsf1g
is inspired greatly by the time-shift embedding procedure
f2–4g. Together with the concept of attractors governing the
system dynamics, the construction of trajectories in an
equivalent state space opens a wide field for the analysis of
experiment data. Dynamical invariants, such as fractal di-
mensionsf5,6g, Lyapunov exponentsf7–9g, and dynamical
entropiesf10g, have been computed from data and resulted in
deeper insight into the nature of the processes generating the
data. The basis of the embedding procedure is to record the
time dependence of one observable or coordinate and to con-
struct trajectories in an equivalent state space with the help
of time-shifted values of the same observablef11,12g. If the
system behaves chaotically or “explores” the state space to a
large extent, dynamical measures can be calculated as the
neighborhood of trajectories is visible by the recurrent non-
linear dynamics on the strange attractor. Only a small part of
the state space is visible, if only a periodic motion is present.
If the overall system dynamics has multiple stable attractors,
then they cannot be found from a single trajectory.

We propose to interact with the system and record its
response. In this way the neighborhood of trajectories can be
explored and the information can be used to predict the type
of future dynamics, starting at a specified initial condition or
after a specific perturbation. To accomplish this, the system
is randomly perturbed and some small time series are taken
from one observable. The perturbations are understood not as
additive random noise on an observable, but as a change in
the dynamics, e.g., by random selection of the systems state,
a sudden change in system parametersf13,14g, or by a tem-
porary coupling to another system. From the small time
samples, trajectories are constructed using time-shifts. The
global flow is approximated using the recorded time evolved
values of the initial conditions. It can be applied to any in-
teresting starting point. Basins of attraction can be measured
and predicted and also the final wave forms.

II. NUMERICAL PROCEDURE

The global flow

C:Rm → Rm

s1d
x ° CDtsxd

of a system maps an initial statex to its time evolved value.
Sequentially applying the flow generates a system trajectory.
If only one coordinatexstd is measured, a theoremf4g guar-
antees that when using proper time-shifted values of one co-
ordinate the resulting attractor is an embedding of the origi-
nal one. This holds in all generic cases provided the
embedding dimension is larger than twice the dimension of
the set in the original state space.

New vectors are constructed

y = hxs0d,xsTd, . . . ,x„sn − 1dT…j. s2d

Their time-evolved value is given by applying the flowF in
this space

F:Rn → Rn

s3d
y ° FDtsyd.

Our extension of the standard method is that we do not
merely follow the dynamics of the unperturbed system,
hence, mapping the embedded trajectory on some attractor,
but investigate the time evolution of different random points
in the state space. This flowF is approximated by a function
f :Rn→Rn by averaging over the time evolution of a set of
initial conditionshykj sdata vectorsd. For this approximation,
radial basis functionsf15–19g are used;

FDtsykd < fsykd = o
l=1

N

clssyk,zld, cl P Rn s4d

ssyk,zld = Îr2 + iyk − zli2 r P R+ s5d

s are radial basis functions andhzlj is a set of data vectors
scalled centersd. In general, the data vectors can be the same
as the centers, but may be random subsets of all available
data vectorsf15g, as done in the numerical examples.r is a
stiffness factor, whose value is taken to be the average
squared euclidian norm in Eq.s5d; a choice which resulted in
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the best predictive abilitiesssee the Appendixd. The coeffi-
cientscl have to be determined by solving the linear equation
s4d for each dimension. Knowing the approximated global
flow f, the time evolution of any initial vector can be traced
by iterated mapping.

III. NUMERICAL EXAMPLE

The forced Duffing oscillator is used as an example. Pa-
rameters were taken such that two attractors are coexisting

ẍ + dẋ− x + x3 = a cossvtd, s6d

with d=0.2,a=1, v=1.7. Figure 1 shows two different tran-
sients visualizing the evolution of the system state to the
final dynamics being either governed by a chaotic or a peri-
odic attractor. The state space shown is the time-shift coor-
dinate state space generated from the time evolution of thex
coordinate of Eq.s6d. The integration time stepssampling
rated is ts<1/25 points per driving period. The time delay
for the attractor construction is 4ts. This not very critical
value can be determined with information theoretic measures
f10,20g, geometric considerationsf21,22g, or very roughly
from an autocorrelation.

For the approximation of the global flow an embedding
dimension ofn=5 is appropriatessee the Appendixd. The
starting points of the transients are taken from a regular 16
316310 grid in thesx, ẋ,fd space, wheref−4.5,4.875g was
the range ofx and ẋ valuessthe gray square in Fig. 2d and
f0,2pg for f=vt mod 2p. To accelerate the calculation, ran-
dom subsets of the transient trajectories have been chosen.
The number of centerszl is 1000 and the number of data
vectorsyk is 400. The evolution timeDt=1ts.

Figure 2sad shows the basins of attraction for the coexist-
ing periodic and chaotic attractor of data generated from Eq.
s6d. The initial conditions for the transients are taken from a
Poincaré plane at a certain driving phase. In Fig. 3, the action
of the flow on these initial vectors is seen. From the first
segments of thex coordinate of the time evolution of initial
vectors from the Poincaré plane a three-dimensional time-
shift embedding is done to visualize the action of the flow of
the system together with the final attractors.

Figure 2sbd shows the basins calculated by iterated map-
ping using the approximated flow. Thesx, ẋd coordinates of
the data vectors for the approximation of the flow are located
within the gray square. It is seen that by iterated mapping of

the time evolution of the initial conditions the final attractors
and the basin boundaries can be found remarkably well.
Also, mapping initial vectors from the outside of the gray
region vectors seems to be possible, though not from every
direction. This may be due to the finite amount of data used
for the approximation.

IV. EXPERIMENT

A simple driven nonlinear RLC circuitf23,24g is used for
an experimental demonstration of the method. It consists of a
resistorsR=200Vd, an inductivitysL=4.1 mHd, and a diode
with voltage-dependent capacitysType 1N4007d connected
in series. It is driven by a sine voltage of 55.824 kHz and
2.2 V. These parameters are set such that there are two co-
existing period-1 attractors, one with a larger and one with a
smaller maximum amplitude. This is happening in the bista-

FIG. 1. Two transients of the Duffing oscillator evolving into
their final coexisting attractorssad chaotic,sbd periodic, in time-shift
coordinate state space of thex coordinate.

FIG. 2. Basins of attraction of two coexisting attractors of the
Duffing oscillator for 1003100 initial conditions.sad Direct calcu-
lation via the differential equation.sbd Calculation via the approxi-
mated global flow. Black: periodic; white: chaotic. The gray square
in the middle shows the region used for the approximation.

FIG. 3. Initial conditions lying in a Poincaré planest=1.75d of
the Duffing oscillatorfEq. s6dg and their time evolution are re-
corded. The first short time segments of thex coordinate are used to
construct an image of this plane. The axis are spanned by the time-
shift coordinate state space of thex coordinate. The two coexisting
stable attractors are shown crossing the plane. The tiles are color
coded with respect to the final attractor. The Poincaré plane in the
original state space is the same as in Fig. 2sad. It is deformed by the
action of the flow.
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bility region shysteresisd of the main resonance of the oscil-
lator, which, due to the softsTodad potential of the oscillator,
is shifted heavily toward lower frequencies. The linear reso-
nance frequency of the circuit is at<270 kHz. The current
through the circuit is measured by sampling the voltage over
the resistor with 2 MHz sampling frequency. This corre-
sponds to a little less than 36 samples per driving period.

In order to produce transient dynamics, the amplitude of
the driving sine-wave generator is amplitude modulated with
a slow frequencys<147 Hzd for about 0.6 ms gating time.
The amplitude modulation generates quasirandom initial
conditions. Care is taken not to produce rational ratios be-
tween the involved frequencies. The start of the gate of the
modulation is not phase locked to the driving signal. The
recording of transients starts when the gate pulsesand with it
the modulationd falls to zero. This way the unperturbed tran-
sient dynamics is recorded of 5000 trajectories with the
length of 176 samples.

Figure 4 shows the transient trajectories in time-shift state
space. They are sorted by the final attractor they are ap-

proaching. It is possible to appreciate the complex structure
of the basins for the two periodic attractors.

Figure 5 shows some examples of the transient time series
involved. The time series are taken after the perturbation has
been switched off. The circuit is driven freely with a pure
sine wave and the current oscillations are approaching their
respective final wave forms.

To predict a final current oscillation and its wave form,
the global flow is approximated from a random collection of
400 data vectors and 2000 random centers. The embedding
dimension isn=6 with a time-shift value ofT=2ts as ob-
tained by the method described in the Appendix. The evolu-
tion time taken isDt=1ts. From the recorded trajectories
only the first time segment of lengthsn−1dT+Dt=11ts is
used for the calculation.

When the flow is approximated, a random initial data vec-
tor is chosen and mapped with the approximated functionf.
Using this predicted current value and the past values, a vec-
tor is constructed and the whole procedure is iterated until a
final oscillation wave form is reached. Figure 6 shows 2
examples of predicted currents from random initial snippets.
Both periodic orbits are shown; their period equals that of
the driving. The final wave forms are the “big” and the
“small” ones, which are the two current wave forms present
in the systemssee Fig. 5d.

V. DISCUSSION

With the described method of embedding short-time tran-
sients to approximate the global flow, the prediction of future
dynamics is possible. If a system is multistable, then the

FIG. 4. Transients of the RLC oscillator experiment with param-
eters set such that two coexisting stable periodic attractors are
present. The dynamics is shown in the time-shift coordinate state
space of the measured current. The circuit has been randomly per-
turbed, and the current has been measured after the perturbations
have been switched off. The transients shown have been sorted for
their final dynamics.sad Transients finally approaching a “big” at-
tractor.sbd Transients for the “small” attractor. The attractors them-
selves are located the most dense part of the plots.

FIG. 5. Time series of the current of the RLC circuit. Five
different transients are shown. The fourth transient is reaching the
big periodic attractor, while the other ones approach the small one.

FIG. 6. Predicted current starting from two different initial con-
ditions. One transient is approaching the big attractor, while the
other one approaches the small periodic attractor.
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basins of attraction can be predicted and the final dynamics
of a single transient can be qualified. Also forecasts for initial
points from the “outside” seem possible. For chaotic time
series, short-term predictions can be made, also dynamical
invariants can be computed from predicted data. In case of
periodic motions, the final wave form is predicted.

Information can be retrieved by interaction with the sys-
tem with perturbations and exploring the neighborhood of a
trajectory. The tangent space can be calculated by differen-
tiation of the functionf, and the stability can be quantified by
calculating eigenvectors and -valuesse.g., a stable periodi-
cally running process can be randomly perturbed to probe its
stabilityd. The described method may also be of interest in
combination with the control of trajectories on unstable pe-
riodic orbits f27g. As the tangent space information needed
for the control is extracted by linearizing the flow, even the
stabilization of perturbed and only weakly stable periodic
motions can be achieved by mapping of the most stable di-
rections leading to regular behavior. The extraction of infor-
mation about coexisting dynamics is limited by the fact that
random initial conditions used for the approximation cover
the interesting parts of the state space. Appropriate experi-
mental mechanisms have to be employed to accomplish this.
In a situation of a very complex basin structure with a mul-
titude of coexisting attractors, the method of tracking initial
orbits may be numerically unfeasable. The procedures for the
choice of time-shifts and embedding dimension follow much
the same strategies as with conventional embedding. The
amount of state space occupied by all transients after pertur-
bation shrinks to the size of the attractor as time evolves. The
embedding dimension should be increased to a value be-
tween the one suitable for the final attractorf28g and the one
appropriate for the full dimension of the perturbed system.
The latter one can be small for simple oscillators or very
large when dealing with, e.g., time-delay feedback systems.
When transients die out quickly the embedding dimension
can be set closer to the lower bound. In the Appendix it is
shown with the example of the duffing oscillator, that with
increasing embedding dimension the prediction errors get
smaller, saturate at an optimal value, and get worse again on
further increase.

The approximation of the global flow is not limited to
radial basis functions or a special choice of one despite of
their good approximation properties. The approximation of
polynomials or any other adapted function by least-squares
methods or genetic algorithms is possible. Their numerical
stability concerning iteration properties has to be determined
though. Data-driven determination of the true system equa-
tions of periodicsand also chaoticd processesf25,26g, which
would never be one-to-one without further knowledge,
seems possible.
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APPENDIX: DETERMINATION OF EMBEDDING AND
RECONSTRUCTION PARAMETERS

The proposed method relies on the embedding procedure
fEq. s2dg. There, an embedding dimensionn and a time-shift

T are used to construct new vectors. We have fixed their
values by determination of the maximum of the signal-to-
noise ratiosSNRd of the predicted values. The SNR in dB is
defined as

SNR = 20 log10
Dyn

D„Fn
Dtsyd − fnsyd…

, sA1d

which calculates the ratio of standard deviations of the time
series to the errors of thenth predicted component,n being
the embedding dimension. The SNR is a scaled logarithmic
inverse of the normalized prediction errorf29g, 0 if the root-
mean square of the error values equals that of the data points,
and large for good predictionsf15,30g. For the numerical
data of Figs. 1–3, the time evolution of all used 2560 initial
conditions of the forced duffing oscillator, the SNR is shown
in Fig. 7. The maximum SNR is circled among various val-
ues obtained for different time-shiftsT and embedding di-
mensionsn. The optimal value coincides with the value
found for data taken when the system dynamics is running
on the single chaotic attractor. It shows, that the dynamics
collapses fast to the dynamics on the respective attractor.
This might not always be the case. If transients from coex-
isting periodic attractors are considered, then the embedding

FIG. 8. Signal-to-noise ratio as a function of the stiffness coef-
ficient for various types of radial basis functions. The optimal em-
bedding parameters determined in Fig. 7 have been taken.

FIG. 7. Signal-to-noise ratio as a function of embedding dimen-
sion for various values of the time-shiftT. The best approximation
of all data pointsssee circled is determined for the numerical ex-
ample of the duffing oscillator.
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dimension has to be higher than the one required for the
periodic attractors to unfold the system dynamicsse.g., in
open systems after a perturbation the system dynamics may
run in a very high-dimensional space, where the embedding
dimension has to be considerably higher than that of the final
attractord. Calculating the SNR is a method to find and jus-
tify the embedding parameters.

To evaluate the dependence on different types of radial
basis functionssRBFsd and their parameters, the SNR is cal-

culated for the multiquadratic RBFfEq. s5dg, the inverse
multiquadratic RBF s−1 and a Gaussian RBFssyk,zld
=exps−iyk−zli2/ r2d. The stiffness parameterr is normalized
to the average squared norm of the differences of data vec-
tors y and centersz. It is seen in Fig. 8 with the data of the
numerical example, that the multiquadratic RBF with a stiff-
ness factorr =1 gives the highest SNR for the predicted val-
ues. Therefore, these values have been taken in the further
calculations.
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