PHYSICAL REVIEW E 71, 016214(2005

Prediction of long-term dynamics from transients
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Existing methods of time series analysis of nonlinear dynamical systems deal with the dynamics on single
(strange attractors. We extend this method for systems that can be externally manipulated. We interact with a
previously unknown system by perturbing it randomly and recording the responses. By following transients for
a short time and approximating the global flow, we can predict the final long-term dynamics, including
coexisting multistable, chaotic, or periodic dynamics. Also the localization of basins of attraction is possible,
enabling the selection or control of the type of final dynamics. Numerical and experimental examples of driven
nonlinear oscillators are given.
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l. INTRODUCTION PRM_, RM
Time-series analysis of nonlinear dynamical systéfis At 1)
is inspired greatly by the time-shift embedding procedure x— W(x)

[2—4]. Together with the concept of attractors governing theys 4 system maps an initial stateto its time evolved value.

system dynamics, the construction of trajectories in ansequentially applying the flow generates a system trajectory.
equivalent state space opens a wide field for the analysis gf only one coordinate(t) is measured, a theorefd] guar-

exper_imené gatﬁ' Dynamical invaria;tz, sucg éas frac;tall diIamtees that when using proper time-shifted values of one co-
mensions[5,6], Lyapunov exponent§7—9], and dynamica . ordinate the resulting attractor is an embedding of the origi-

entropied 10], have been computed from data and resulted iMal one. This holds in all generic cases provided the

deeper insight into the nature of the processes generating tr<]—.~‘?r1bedding dimension is larger than twice the dimension of
data. The basis of the embedding procedure is to record tlme set in the original state space

time dependence of one observable or coordinate and to con- New vectors are constructed

struct trajectories in an equivalent state space with the help

of time-shifted values of the same observadlg,12. If the y ={x(0),x(T), ... x((n=1)T)}. (2
system behaves chaotically or “explores” the state space to
large extent, dynamical measures can be calculated as t

H%leir time-evolved value is given by applying the flebvin
neighborhood of trajectories is visible by the recurrent nont

his space

linear dynamics on the strange attractor. Only a small part of ®:R"— RN
the state space is visible, if only a periodic motion is present. 3
If the overall system dynamics has multiple stable attractors, y > BA(y) )

then they cannot be found from a single trajectory.
We propose to interact with the system and record its Our extension of the standard method is that we do not

response. In this way the neighborhood of trajectories can bgerely follow the dynamics of the unperturbed system,

explored and the information can be used to predict the typaence, mapping the embedded trajectory on some attractor,

of future dynamics, starting at a specified initial condition orbut investigate the time evolution of different random points

after a specific perturbation. To accomplish this, the systenn the state space. This flod is approximated by a function

is randomly perturbed and some small time series are taken R"— R" by averaging over the time evolution of a set of

from one observable. The perturbations are understood not &sitial conditions{y,} (data vectors For this approximation,

additive random noise on an observable, but as a change iadial basis functionf15-19 are used:;

the dynamics, e.g., by random selection of the systems state,

a sudden change in system paramef&8s14], or by a tem-

porary coupling to another system. From the small time Ay ~ fly) = 2 ciolyz), 6 e R (4)

samples, trajectories are constructed using time-shifts. The 1=t

global flow is approximated using the recorded time evolved -

values of the initial conditions. It can be applied to any in- o(Ywz) =\ + |y -zl reR* (5)

teresting starting point. Basins of attraction can be measured dial basis f . 4t fq
and predicted and also the final wave forms. o are radial basis functions ard} is a set of data vectors

(called centers In general, the data vectors can be the same
as the centers, but may be random subsets of all available
data vectorg15], as done in the numerical exampless a
stiffness factor, whose value is taken to be the average
The global flow squared euclidian norm in E¢p); a choice which resulted in

N

II. NUMERICAL PROCEDURE
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FIG. 1. Two transients of the Duffing oscillator evolving into
their final coexisting attractor®) chaotic,(b) periodic, in time-shift
coordinate state space of tRecoordinate.

. . . FIG. 2. Basins of attraction of two coexisting attractors of the
the best predictive abilitiessee the Appendix The coeffi- Duffing oscillator for 100< 100 initial conditions(a) Direct calcu-

cientsc, have to be determined by solving the linear equationtion via the differential equatiorib) Calculation via the approxi-

(4) for each dimension. Knowing the approximated globalmated global flow. Black: periodic; white: chaotic. The gray square
flow f, the time evolution of any initial vector can be traced in the middle shows the region used for the approximation.

by iterated mapping.

the time evolution of the initial conditions the final attractors
l1l. NUMERICAL EXAMPLE and the basin boundaries can be found remarkably well.

. . . Also, mapping initial vectors from the outside of the gray
The forced Duffing oscillator is used as an example. Paregion vectors seems to be possible, though not from every
rameters were taken such that two attractors are coexistindirection. This may be due to the finite amount of data used

%+ dx—x+x3=a coat), ©6) for the approximation.
with d=0.2,a=1, w=1.7. Figure 1 shows two different tran-

sients visualizing the evolution of the system state to the IV. EXPERIMENT

final dynamics being either governed by a chaotic or a peri- A simple driven nonlinear RLC circuf3,24 is used for

g.d'c attractor. The state spe:jc? shovr\]/n IS the ur?e_-smf&chrén experimental demonstration of the method. It consists of a
inate state space generated from the time evolution of t € resistor(R=2001), an inductivity(L=4.1 mH, and a diode

coordinate of Eq(6). The integration time stegsampling : :
. . 2 . : with voltage-dependent capaci e 1N4007 connected
rate) is ts=1/25 points per driving period. The time delay ; "o oo 9|]t is dpriven by aginefy\-/yopltage of 52.824 kHz and

e L) (22 V. These parameters are st such hat thre are wo co
3xisting period-1 attractors, one with a larger and one with a

[10.29, geometric cpn5|derat|or[§1,22], or very roughly smaller maximum amplitude. This is happening in the bista-
from an autocorrelation.

For the approximation of the global flow an embedding
dimension ofn=5 is appropriate(see the Appendjx The
starting points of the transients are taken from a regular 16
X 16X 10 grid in the(x, X, ¢) space, wherg-4.5,4.87% was
the range ofk and x values(the gray square in Fig.)2and
[0, 2] for ¢=wt mod 2. To accelerate the calculation, ran-
dom subsets of the transient trajectories have been chosen.
The number of centerg is 1000 and the number of data
vectorsy, is 400. The evolution timét=1t.

Figure Za) shows the basins of attraction for the coexist-
ing periodic and chaotic attractor of data generated from Eq.
(6). The initial conditions for the transients are taken from a
Poincaré plane at a certain driving phase. In Fig. 3, the action
of the flow on these “T““a' vectors_is seen. I_:rom t_hg_first FIG. 3. Initial conditions lying in a Poincaré plarie=1.75 of
segments of tha coo_rdlna'Ee of the time evol_utlon _Of '”'“"?" the Duffing oscillator[Eq. (6)] and their time evolution are re-
Ve_CtorS from,the_ Poincare Plane a three'd'mens'onal tlmeéorded. The first short time segments of #eoordinate are used to
shift embedding is don_e to V'St_’ahze the action of the flow of.qnstruct an image of this plane. The axis are spanned by the time-
the system together with the final attractors. shift coordinate state space of theoordinate. The two coexisting

Figure 2b) shows the basins calculated by iterated map=taple attractors are shown crossing the plane. The tiles are color
ping using the approximated flow. Th®,X) coordinates of  coded with respect to the final attractor. The Poincaré plane in the
the data vectors for the approximation of the flow are locate@riginal state space is the same as in Fig).2t is deformed by the
within the gray square. It is seen that by iterated mapping o#ction of the flow.
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1800 FIG. 5. Time series of the current of the RLC circuit. Five
different transients are shown. The fourth transient is reaching the
big periodic attractor, while the other ones approach the small one.
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proaching. It is possible to appreciate the complex structure
of the basins for the two periodic attractors.

Figure 5 shows some examples of the transient time series
involved. The time series are taken after the perturbation has
been switched off. The circuit is driven freely with a pure
sine wave and the current oscillations are approaching their
respective final wave forms.

To predict a final current oscillation and its wave form,
the global flow is approximated from a random collection of
400 data vectors and 2000 random centers. The embedding
dimension isn=6 with a time-shift value ofT=2t; as ob-
tained by the method described in the Appendix. The evolu-
tion time taken isAt=1t, From the recorded trajectories
160 Lo o - S s only the first time segment of lengttn—1)T+At=11; is
1600 1800 2000 2200 2400 2600 R

(b) I(t used for the calculation.
When the flow is approximated, a random initial data vec-

FIG. 4. Transients of the RLC oscillator experiment with param-tor is chosen and mapped with the approximated function
eters set such that two coexisting stable periodic attractors areJsing this predicted current value and the past values, a vec-
present. The dynamics is shown in the time-shift coordinate statéor is constructed and the whole procedure is iterated until a
space of the measured current. The circuit has been randomly péfinal oscillation wave form is reached. Figure 6 shows 2
turbed, and the current has been measured after the perturbatiosgamples of predicted currents from random initial snippets.
have been switched off. The transients shown have been sorted f@oth periodic orbits are shown; their period equals that of
their final dynamics(a) Transients finally approaching a “big” at- the driving. The final wave forms are the “big” and the
traCtor.(b) Transients for the “small” attractor. The attractors them- “small” ones, which are the two current wave forms present
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selves are located the most dense part of the plots. in the systerr(see Fig. 5.

bility region (hysteresis of the main resonance of the oscil-

lator, which, due to the sofffodg potential of the oscillator, V. DISCUSSION

is shifted heavily toward lower frequencies. The linear reso- _ . .

nance frequency of the circuit is at270 kHz. The current With the described method of embedding short-time tran-

through the circuit is measured by sampling the voltage ovesients to approximate the global flow, the prediction of future

the resistor with 2 MHz sampling frequency. This corre-dynamics is possible. If a system is multistable, then the

sponds to a little less than 36 samples per driving period.
In order to produce transient dynamics, the amplitude of

0 2600
the driving sine-wave generator is amplitude modulated with %
a slow frequency(=147 H2 for about 0.6 ms gating time. 3
The amplitude modulation generates quasirandom initial ,%
conditions. Care is taken not to produce rational ratios be- ‘o
tween the involved frequencies. The start of the gate of the 3
modulation is not phase locked to the driving signal. The &
recording of transients starts when the gate p(dsel with it § 1600

200

100
time [0.5us]

the modulationfalls to zero. This way the unperturbed tran-
sient dynamics is recorded of 5000 trajectories with the
length of 176 samples. FIG. 6. Predicted current starting from two different initial con-

Figure 4 shows the transient trajectories in time-shift statelitions. One transient is approaching the big attractor, while the
space. They are sorted by the final attractor they are apther one approaches the small periodic attractor.
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basins of attraction can be predicted and the final dynamics
of a single transient can be qualified. Also forecasts for initial
points from the “outside” seem possible. For chaotic time
series, short-term predictions can be made, also dynamical
invariants can be computed from predicted data. In case of
periodic motions, the final wave form is predicted.
Information can be retrieved by interaction with the sys-
tem with perturbations and exploring the neighborhood of a
trajectory. The tangent space can be calculated by differen-
tiation of the functionf, and the stability can be quantified by
calculating eigenvectors and -valugsg., a stable periodi-
cally running process can be randomly perturbed to probe its
stability). The described method may also be of interest in
combination with the control of trajectories on unstable pe-
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riodic orbits[27]. As the tangent space information needed FIG. 7. Signal-to-noise ratio as a function of embedding dimen-
for the control is extracted by linearizing the flow, even thesion for various values of the time-shift The best approximation
stabilization of perturbed and only weakly stable periodicof all data points(see circlg is determined for the numerical ex-
motions can be achieved by mapping of the most stable diample of the duffing oscillator.

rections leading to regular behavior. The extraction of infor-

mation about coexisting dynamics is limited by the fact thatT are used to construct new vectors. We have fixed their
random initial conditions used for the approximation coveryajues by determination of the maximum of the signal-to-

the interesting parts of the state space. Appropriate experjjgise ratio(SNR) of the predicted values. The SNR in dB is
mental mechanisms have to be employed to accomplish thigiafined as

In a situation of a very complex basin structure with a mul-
titude of coexisting attractors, the method of tracking initial
orbits may be numerically unfeasable. The procedures for the
choice of time-shifts and embedding dimension follow much
the same strategies as with conventional embedding. The

SNR =20logg

Ay,

A@Y(y) — o)

(A1)

amount of state space occupied by all transients after pertuwhich calculates the ratio of standard deviations of the time
bation shrinks to the size of the attractor as time evolves. Theeries to the errors of thath predicted componenty being
embedding dimension should be increased to a value béhe embedding dimension. The SNR is a scaled logarithmic

tween the one suitable for the final attradtd8] and the one

inverse of the normalized prediction er{@9], 0 if the root-

appropriate for the full dimension of the perturbed systemmean square of the error values equals that of the data points,
The latter one can be small for simple oscillators or veryand large for good predictiongl5,30. For the numerical
large when dealing with, e.g., time-delay feedback systemdata of Figs. 1-3, the time evolution of all used 2560 initial
When transients die out quickly the embedding dimensiorconditions of the forced duffing oscillator, the SNR is shown
can be set closer to the lower bound. In the Appendix it isn Fig. 7. The maximum SNR is circled among various val-
shown with the example of the duffing oscillator, that with ues obtained for different time-shifts and embedding di-
increasing embedding dimension the prediction errors gemensionsn. The optimal value coincides with the value
smaller, saturate at an optimal value, and get worse again dound for data taken when the system dynamics is running

further increase.

on the single chaotic attractor. It shows, that the dynamics

The approximation of the global flow is not limited to collapses fast to the dynamics on the respective attractor.
radial basis functions or a special choice of one despite oThis might not always be the case. If transients from coex-
their good approximation properties. The approximation ofisting periodic attractors are considered, then the embedding

polynomials or any other adapted function by least-squares
methods or genetic algorithms is possible. Their numerical
stability concerning iteration properties has to be determined
though. Data-driven determination of the true system equa-
tions of periodic(and also chaotjcprocesse§25,2€], which
would never be one-to-one without further knowledge,
seems possible.
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APPENDIX: DETERMINATION OF EMBEDDING AND
RECONSTRUCTION PARAMETERS
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The proposed method relies on the embedding procedure FIG. 8. Signal-to-noise ratio as a function of the stiffness coef-

[Eq. (2)]. There, an embedding dimensiarand a time-shift

ficient for various types of radial basis functions. The optimal em-

bedding parameters determined in Fig. 7 have been taken.
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dimension has to be higher than the one required for theulated for the multiquadratic RBFEQ. (5)], the inverse

periodic attractors to unfold the system dynamiesy., in  multiquadratic RBF o' and a Gaussian RBFo(y,z)

open systems after a perturbation the system dynamics mayexp(—|ly,—z]*/r?). The stiffness parameteris normalized

run in a very high-dimensional space, where the embeddintgp the average squared norm of the differences of data vec-

dimension has to be considerably higher than that of the finalorsy and centerz. It is seen in Fig. 8 with the data of the

attractoy. Calculating the SNR is a method to find and jus- numerical example, that the multiquadratic RBF with a stiff-

tify the embedding parameters. ness factor =1 gives the highest SNR for the predicted val-
To evaluate the dependence on different types of radialies. Therefore, these values have been taken in the further

basis functiondRBF9 and their parameters, the SNR is cal- calculations.
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